In this paper, the IoT-based adaptive mutation PSO-BPNN algorithm is used to conduct in-depth research and analysis of the entrepreneurship evaluation model for college students and practical applications. -is paper details the principle, implementation, and characteristics of each BP algorithm and PSO algorithm. When classifying college students’ entrepreneurship evaluation based on BP neural network, because BP algorithm is a local optimization-seeking algorithm, it is easy to fall into local minima in the training phase of the network and the convergence speed is slow, which leads to the reduction of classifier recognition rate. To address the above problems, this paper proposes the algorithm of PSO optimized BP neural network (PSOBPNN) and establishes a classification and recognition model based on this algorithm for college students’ entrepreneurship evaluation. -e predicted values obtained from the particle swarm optimization neural network model are used to calculate the gray intervals, and the modeling samples are further screened using the gray intervals and the correlation principle, while the hyperspectral particle swarm optimization neural network model of soil organic matter based on the gray intervals is established afterward; and the estimation results are compared and analyzed with those of traditional modeling methods. -e results showed that the coefficient of determination of the gray interval-based particle swarm optimization neural network model was 0.8826, and the average relative error was 3.572%, while the coefficient of determination of the particle swarm optimization neural network model was 0.853, and the average relative error was 4.34%; the average relative errors of the BP neural network model, support vector machine model, and multiple linear regression model were 8.79%, 6.717%, and 9.9%, respectively. -e average relative errors of the BP neural network model, support vector machine model, and multiple linear regression model are 8.79%, 6.717%, and 9.468%, respectively. In general, the entrepreneurial ability of college students is at a good level (83.42 points), among which the entrepreneurial management ability score (84.30 points) and entrepreneurial spirit (84.16 points) are basically the same, while the entrepreneurial technology ability is relatively low (82.76 points), and the evaluation results are further verified by the double case analysis method. -e current problems encountered by university students in entrepreneurship are mainly the lack of practicality, which indicates that universities, industries, and national strategy implementation levels are not sufficiently focused and collaborative in entrepreneurship development to varying degrees.
Loading....